نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست‌شناسی دریایی، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران.

2 گروه فناوری های نوین، پژوهشکده منطقه ای جنگل های حرا، دانشگاه هرمزگان، بندرعباس، ایران.

3 گروه بیوتکنولوژی، پژوهشکده خلیج‌فارس، دانشگاه خلیج‌فارس، بوشهر، ایران.

4 پژوهشکده میگوی کشور، سازمان تحقیقات علوم شیلات ایران، سازمان آموزش و ترویج تحقیقات کشاورزی، بوشهر، ایران.

5 گروه فارماسیوتیکس، دانشکده داروسازی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی مازندران، ساری، ایران

6 گروه بیوتکنولوژی، پژوهشکده خلیج‌فارس، دانشگاه خلیج‌فارس، بوشهر، ایران

چکیده

پژوهش حاضر باهدف بررسی سطوح مختلف فوکوئیدان جیره غذایی بر روی عملکرد رشد، زنده‌مانی و پارامترهای بیوشیمیایی میگو پاسفید غربی، Litopenaus vannamei انجام گرفت. میگوها با متوسط وزن اولیه حدود 8 گرم با چهار جیره غذایی مختلف که حاوی چهار سطح فوکوئیدان (صفر، 0/1 %، 0/2 % و 0/4 0%) به مدت 30 روز در قالب طرح کاملاً تصادفی با سه تکرار مورد تغذیه قرار گرفتند. نتایج  نشان داد که عملکرد رشد (وزن انتهایی، وزن به‌دست‌آمده، ضریب تبدیل غذایی و ضریب رشد ویژه) میگوهای تغذیه‌شده با جیره غذایی حاوی فوکوئیدان به‌طور معنی‌داری (P < 0.01) نسبت به میگوهای تغذیه‌شده با جیره غذایی شاهد بهبود یافتند. بهترین عملکرد رشد در میگوهای تغذیه‌شده با جیره غذایی حاوی 0/4 % فوکوئیدان مشاهده شد. زنده‌مانی در بین گروه‌های تغذیه‌شده با مکمل فوکوئیدان و شاهد تفاوت معنی‌داری را نشان ندادند (P > 0.05). پارامترهای بیوشیمیایی همولنف ازجمله گلوکز، تری گلیسیرید و کلسترول به‌طور معنی‌داری در میگوهای تغذیه‌شده با سطوح مختلف فوکوئیدان در مقایسه با گروه شاهد کاهش داشته است. اما میزان پروتئین در گروه-های تغذیه‌شده با مکمل فوکوئیدان نسبت به شاهد افزایش نشان داد. فعالیت آنزیم‌های آلانین آمینو ترانسفراز و آسپارتات آمینو ترانسفراز در همولنف میگوهای شاهد نسبت به میگوهای تغذیه‌شده با جیره غذایی حاوی فوکوئیدان بالاتر بود. به‌طورکلی، نتایج تحقیق حاضر آشکار ساخت که جیره غذایی حاوی سطوح مختلف فوکوئیدان به‌ویژه 0/4 % منجر به افزایش شاخص‌های رشد و بهبود پارامترهای بیوشیمیایی همولنف و درنتیجه بهبود وضعیت سلامت میگو گردیده است.

کلیدواژه‌ها

موضوعات

Aguirre-Guzman, G., Sanchez-Martinez, J.G., Campa-Cordova, A.I., Luna-Gonzalez, A. and Ascencio, F., 2009. Penaeid shrimp immune system. The Thai Journal of Veterinary Medicine39(3), pp.205-215.
Ale, M.T., Maruyama, H., Tamauchi, H., Mikkelsen, J.D. and Meyer, A.S., 2011. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro. Marine Drugs9(12), pp.2605-2621.
Aparicio-Simón, B., Piñón, M., Racotta, R. and Racotta, I.S., 2010. Neuroendocrine and metabolic responses of Pacific whiteleg shrimp Litopenaeus vannamei exposed to acute handling stress. Aquaculture298(3-4), pp.308-314.
Azad, I.S., Panigrahi, A., Gopal, C., Paulpandi, S., Mahima, C. and Ravichandran, P., 2005. Routes of immunostimulation vis-a-vis survival and growth of Penaeus monodon postlarvae. Aquaculture248(1-4), pp.227-234.
Ballow, M., 1997. Mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory diseases. Journal of allergy and clinical immunology100(2), pp.151-157.
Ballow, M., 2011. The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. Journal of Allergy and Clinical Immunology127(2), pp.315-323.
Barton, B.A., 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and comparative biology42(3), pp.517-525.
Bonilla-Gómez, J.L., Chiappa-Carrara, X., Galindo, C., Jeronimo, G., Cuzon, G. and Gaxiola, G., 2012. Physiological and biochemical changes of wild and cultivated juvenile pink shrimp Farfantepenaeus duorarum (Crustacea: Penaeidae) during molt cycle. Journal of Crustacean Biology32(4), pp.597-606.
Briggs, M., Funge-Smith, S., Subasinghe, R. and Phillips, M., 2004. Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. RAP publication10(2004), p.92.
Chang, Z.Q., Ge, Q.Q., Sun, M., Wang, Q., Lv, H.Y. and Li, J., 2018. Immune responses by dietary supplement with Astragalus polysaccharides in the Pacific white shrimp, Litopenaeus vannamei. Aquaculture nutrition24(2), pp.702-711.
Chanson, M. and Spray, D.C., 1992. Gating and single channel properties of gap junction channels in hepatopancreatic cells of Procambarus clarkii. The Biological bulletin183(2), pp.341-342.
Chen, Y.Y., Chen, J.C., Lin, Y.C., Putra, D.F., Kitikiew, S., Li, C.C., Hsieh, J.F., Liou, C.H. and Yeh, S.T., 2014. Shrimp that have received carrageenan via immersion and diet exhibit immunocompetence in phagocytosis despite a post-plateau in immune parameters. Fish & Shellfish Immunology36(2), pp.352-366.
Cheng, W., Wang, L.U. and Chen, J.C., 2005. Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aquaculture250(3-4), pp.592-601.
Cheng, W., Liu, C.H., Kuo, C.M. and Chen, J.C., 2005. Dietary administration of sodium alginate enhances the immune ability of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish & Shellfish Immunology18(1), pp.1-12.
Chien, Y.H., Pan, C.H. and Hunter, B., 2003. The resistance to physical stresses by Penaeus monodon juveniles fed diets supplemented with astaxanthin. Aquaculture216(1-4), pp.177-191.
Choi, E.M., Kim, A.J., Kim, Y.O. and Hwang, J.K., 2005. Immunomodulating activity of arabinogalactan and fucoidan in vitro. Journal of medicinal food8(4), pp.446-453.
Chotigeat, W., Tongsupa, S., Supamataya, K. and Phongdara, A., 2004. Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture233(1-4), pp.23-30.
Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G.E., Berman, A.E., Bilan, M.I. and Usov, A.I., 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology17(5), pp.541-552.
Duan, Y., Zhang, Y., Dong, H., Wang, Y., Zheng, X. and Zhang, J., 2017. Effect of dietary Clostridium butyricum on growth, intestine health status and resistance to ammonia stress in Pacific white shrimp Litopenaeus vannamei. Fish & shellfish immunology65, pp.25-33.
Gibson, R., 1979. The decapod hepatopancreas. Oceanogr. Mar. Biol. Ass. Rev.17, pp.289-294.
Hayashi, K., Nakano, T., Hashimoto, M., Kanekiyo, K. and Hayashi, T., 2008. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. International immunopharmacology8(1), pp.109-116.
Hoseinifar, S.H., Dadar, M. and Ringø, E., 2017. Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario. Aquaculture Research48(8), pp.3987-4000.
Immanuel, G., Sivagnanavelmurugan, M., Marudhupandi, T., Radhakrishnan, S. and Palavesam, A., 2012. The effect of fucoidan from brown seaweed Sargassum wightii on WSSV resistance and immune activity in shrimp Penaeus monodon (Fab). Fish & shellfish immunology32(4), pp.551-564.
Kilby, B.A., 1976. Biochemistry, the molecular basis of cell structure and function: Albert L. Lehninger. 1975. Worth Publishers, Inc., New York.
Lee, P.T., Tran, H.T.Q., Huang, H.T., Nan, F.H. and Lee, M.C., 2020. Sargassum horneri extracts stimulate innate immunity, enhance growth performance, and upregulate immune genes in the white shrimp Litopenaeus vannamei. Fish & shellfish immunology102, pp.276-285.
Li, Y., Li, J. and Wang, Q., 2006. The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture256(1-4), pp.608-616.
Lin, S., Pan, Y., Luo, L. and Luo, L., 2011. Effects of dietary β-1, 3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish & shellfish immunology31(6), pp.788-794.
Liu, C.H. and Chen, J.C., 2004. Effect of ammonia on the immune response of white shrimpLitopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish & shellfish immunology16(3), pp.321-334.
Liu, W., Yuan, Y., Sun, C., Balasubramanian, B., Zhao, Z. and An, L., 2019. Effects of dietary betaine on growth performance, digestive function, carcass traits, and meat quality in indigenous yellow-feathered broilers under long-term heat stress. Animals9(8), p.506.
Liu, W.C., Zhou, S.H., Balasubramanian, B., Zeng, F.Y., Sun, C.B. and Pang, H.Y., 2020. Dietary seaweed (Enteromorpha) polysaccharides improves growth performance involved in regulation of immune responses, intestinal morphology and microbial community in banana shrimp Fenneropenaeus merguiensis. Fish & shellfish immunology104, pp.202-212.
López, N., Cuzon, G., Gaxiola, G., Taboada, G., Valenzuela, M., Pascual, C., Sánchez, A. and Rosas, C., 2003. Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture224(1-4), pp.223-243.
Medina-Félix, D., López-Elías, J.A., Martínez-Córdova, L.R., López-Torres, M.A., Hernández-López, J., Rivas-Vega, M.E. and Mendoza-Cano, F., 2014. Evaluation of the productive and physiological responses of Litopenaeus vannamei infected with WSSV and fed diets enriched with Dunaliella sp. Journal of invertebrate pathology117, pp.9-12.
Meshkini S. and Tafi AA 2016. Presentation and usage of immunostimulators in aquaculture, Agricultural and Natural Resources Engineering, 46(12), pp. 50-55 (In Persian)
Niu, J., Liu, Y.J., Lin, H.Z., Mai, K.S., Yang, H.J., Liang, G.Y. and TIAN, L.X., 2011. Effects of dietary chitosan on growth, survival and stress tolerance of postlarval shrimp, Litopenaeus vannamei. Aquaculture Nutrition17(2), pp. e406-e412.
Niu, J., Li, C.H., Tian, L.X., Liu, Y.J., Chen, X., Wu, K.C., Jun, W., Huang, Z., Wang, Y. and Lin, H.Z., 2015. Suitable dietary chitosan improves the growth performance, survival and immune function of tiger shrimp, P enaeus monodon. Aquaculture Research46(7), pp.1668-1678.
Pascual, C., Gaxiola, G. and Rosas, C., 2003. Blood metabolites and hemocyanin of the white shrimp, Litopenaeus vannamei: the effect of culture conditions and a comparison with other crustacean species. Marine biology142(4), pp.735-745.
Pascual, C., Sánchez, A., Zenteno, E., Cuzon, G., Gabriela, G., Brito, R., Gelabert, R., Hidalgo, E. and Rosas, C., 2006. Biochemical, physiological, and immunological changes during starvation in juveniles of Litopenaeus vannamei. Aquaculture251(2-4), pp.416-429.
Pires, D.R., De Morais, A.C.N., Coelho, C.C.S., Marinho, A.F., Góes, L.C.D.S.A., Augusta, I.M., Ferreira, F.S. and Saldanha, T., 2018. Nutritional composition, fatty acids and cholesterol levels in Atlantic white shrimp (Litopenaeus schimitti). International Food Research Journal25(1), pp.151-157.
Prabu, D.L., Sahu, N.P., Pal, A.K., Dasgupta, S. and Narendra, A., 2016. Immunomodulation and interferon gamma gene expression in sutchi cat fish, Pangasianodon hypophthalmus: effect of dietary fucoidan rich seaweed extract (FRSE) on pre and post challenge period. Aquaculture research47(1), pp.199-218.
Qi, Z., Zhang, X.H., Boon, N. and Bossier, P., 2009. Probiotics in aquaculture of China—current state, problems and prospect. Aquaculture290(1-2), pp.15-21.
Racotta, I.S. and Palacios, E., 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. Journal of the World Aquaculture Society29(3), pp.351-356.
Ray, G.W., Liang, D., Yang, Q., Tan, B., Dong, X., Chi, S., Liu, H., Zhang, S. and Rimei, L., 2020. Effects of replacing fishmeal with dietary soybean protein concentrate (SPC) on growth, serum biochemical indices, and antioxidative functions for juvenile shrimp Litopenaeus vannamei. Aquaculture516, p.734630.
Sivagnanavelmurugan, M., Marudhupandi, T., Palavesam, A. and Immanuel, G., 2012. Antiviral effect of fucoidan extracted from the brown seaweed, Sargassum wightii, on shrimp Penaeus monodon postlarvae against white spot syndrome virus. Journal of the World Aquaculture Society43(5), pp.697-706.
Sivagnanavelmurugan, M., Thaddaeus, B.J., Palavesam, A. and Immanuel, G., 2014. Dietary effect of Sargassum wightii fucoidan to enhance growth, prophenoloxidase gene expression of Penaeus monodon and immune resistance to Vibrio parahaemolyticus. Fish & Shellfish Immunology39(2), pp.439-449.
Sivagnanavelmurugan, M., Karthik Ramnath, G., Jude Thaddaeus, B., Palavesam, A. and Immanuel, G., 2015. Effect of Sargassum wightii fucoidan on growth and disease resistance to Vibrio parahaemolyticus in Penaeus monodon post‐larvae. Aquaculture nutrition21(6), pp.960-969.
Thuy, T.T.T., Ly, B.M., Van, T.T.T., Van Quang, N., Tu, H.C., Zheng, Y., Seguin-Devaux, C., Mi, B. and Ai, U., 2015. Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydrate polymers115, pp.122-128.
Traifalgar, R.F., Kira, H., Thanh Tung, H.A., Raafat Michael, F., Laining, A., Yokoyama, S., IShikawa, M., Koshio, S., Serrano, A.E. and Corre, V., 2010. Influence of dietary fucoidan supplementation on growth and immunological response of juvenile Marsupenaeus japonicus. Journal of the World Aquaculture Society41, pp.235-244.
Traifalgar, R.F., Serrano, A.E., CoRRE, V., Kira, H., TuNG, H.T., Michael, F.R., Kader, M.A., Laining, A., Yokoyama, S., Ishikawa, M. and Koshio, S., 2009. Evaluation of dietary fucoidan supplementation effects on growth performance and vibriosis resistance of Penaeus monodon postlarvae. Aquaculture Science57(2), pp.167-174.
Traifalgar, R.F.M., Corre, V.L. and Serrano, A.E., 2013. Efficacy of dietary immunostimulants to enhance the immunological responses and Vibriosis resistance of juvenile Penaeus monodon. J. Fish. Aquat. Sci8(2), pp.340-354.
Van Wyk, P., Davis-Hodgkins, M., Laramore, R., Main, K.L., Mountain, J. and Scarpa, J., 1999. Farming marine shrimp in recirculating freshwater systems (Vol. 7, pp. 125-140). Ft. Pierce, FL: Harbor Branch Oceanographic Institution.
Vaseeharan, B., Ramasamy, P., Wesley, S.G. and Chen, J.C., 2013. Influence of acute salinity changes on biochemical, hematological and immune characteristics of Fenneropenaeus indicus during white spot syndrome virus challenge. Microbiology and immunology57(6), pp.463-469.
Wang, J., Zhang, Q., Zhang, Z. and Li, Z., 2008. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International journal of biological macromolecules42(2), pp.127-132.
WU, Q., Rong, X., Xing, Y. and LI, S., 2000. Regulatory mechanism of fucoidan for disorder of lipid metabolism in rats. Traditional Chinese Drug Research & Clinical Pharmacology.
Yamamoto, Y., 1981. Determination of toxicity by biochemical method. Fishes as laboratory, pp.568-574.
Yang, C., Chung, D. and You, S., 2008. Determination of physicochemical properties of sulphated fucans from sporophyll of Undaria pinnatifida using light scattering technique. Food Chemistry111(2), pp.503-507.
Yoganandhan, K., Thirupathi, S. and Hameed, A.S., 2003. Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture221(1-4), pp.1-11.
Yu, M.C., Li, Z.J., Lin, H.Z., Wen, G.L. and Ma, S., 2008. Effects of dietary Bacillus and medicinal herbs on the growth, digestive enzyme activity, and serum biochemical parameters of the shrimp Litopenaeus vannamei. Aquaculture international16, pp.471-480.
Zeng, S.L., Long, W.Q., Tian, L.X., Xie, S.W., Chen, Y.J., Yang, H.J., Liang, G.Y. and Liu, Y.J., 2016. Effects of dietary aflatoxin B1 on growth performance, body composition, haematological parameters and histopathology of juvenile Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition22(5), pp.1152-1159.