نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران.

2 گروه فناوری های نوین، پژوهشکده منطقه ای جنگل های حرا، دانشگاه هرمزگان، بندرعباس، ایران.

3 استاد، گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه قم، قم، ایران

4 دانشیار، گروه شیمی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران.

چکیده

امروزه نانوتکنولوژی تقریباً در تمام حوزه‌های علمی و تکنیکی نفوذ کرده است. این مطالعه سنتز سبز نانوذرات اکسیدسریم با استفاده از عصاره‌های طبیعی دریایی ماکروجلبک Sargassum ilicifolium و ستاره شکننده scolopendrina Ophiocoma را مورد بررسی قرار داد. ترکیبات موجود در عصاره‌های دریایی می‌توانند به‌عنوان عوامل کاهنده و تثبیت کننده برای یون‎های سریم عمل کنند. انتقال اکسیداسیون بین یون‎هایCe3+ وCe4+ به‎‌طور همزمان منجر به محصول نانوذرات‌های سریم اکساید می‌شود. پیک‌های مشخصه برای CeO2 با طیف پراش اشعه ایکس به صفحات کریستالی (111)، (200)، (220)،‌ (311) ، (331)، (420) و (422) مربوط می‌شوند. در تصاویرSEM نانوذرات اکسیدسریم سنتز شده به‎طور کلی شکل کروی با اندازه حدود 10 تا 12 نانومتر دارند، همچنین تجزیه و تحلیل FTIR حاکی از وجود قله‌های برجسته‎ای بود که حضور این نانوذره را نشان داد. حالت‌های ظرفیتی متفاوت Ce3+ وCe4+ روی سطح نانوسریم به‎عنوان یک آنتی‌اکسیدان عمل می‌کند. نانوذره‌ی سنتز شده از جلبک در غلظت‌های 1000، 500 و 250 میکروگرم بر میلی‌لیتر بین 60-65 درصد مهار رادیکال آزاد DPPH را نشان داد . بالاترین میزان احیاکنندگی ماکروجلبک S. ilicifolium در غلظت 500 میکروگرم بر میلی‌لیتر که اختلاف معنی‌داری با نانو ذرات سنتز شده از عصاره‌ جانوری موجود و غلظت‌های مختلف مورد آزمایش مشاهده گردید (05/0 .(P≤فعالیت ضدباکتریایی نشان داد که باکتری‌گرم منفی نسبت به باکتری‌ گرم مثبت در برابر نانوذرات CeO2 مقاوم‌تر است.

کلیدواژه‌ها

موضوعات

Altaf, M., Manoharadas, S. and Zeyad, M.T., 2021. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microscopy Research and Technique84(8), pp.1638-1648. https://doi.org/10.1002/jemt.23724
Arasu, M.V., Thirumamagal, R., Srinivasan, M.P., Al-Dhabi, N.A., Ayeshamariam, A., Kumar, D.S., Punithavelan, N. and Jayachandran, M., 2017. Green chemical approach towards the synthesis of CeO2 doped with seashell and its bacterial applications intermediated with fruit extracts. Journal of Photochemistry and Photobiology B: Biology173, pp.50-60. https://doi.org/10.1016/j.jphotobiol.2017.05.032
Arunachalam, T., Karpagasundaram, M. and Rajarathinam, N., 2017. Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Materials Science-Poland, 35(4): 791-798 https://doi.org:10.1515/msp-2017-010
Aseyd Nezhad, S., Es‐haghi, A. and Tabrizi, M.H., 2020. Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Applied Organometallic Chemistry, 34(2), p. e5314. http://dx.doi.org/ 10.1002/aoc.5314.
Baharara, J., Amini, E. and Salek-Abdollahi, F., 2020. Anti-inflammatory properties of saponin fraction from Ophiocoma erinaceus. Iranian Journal of Fisheries Sciences19(2), pp.638-652. https://doi.org/10.22092/ijfs.2019.118961.0
Barciela, P., Carpena, M., Li, N.Y., Liu, C., Jafari, S.M., Simal-Gandara, J. and Prieto, M.A., 2022. Macroalgae as biofactories of metal nanoparticles; biosynthesis and food applications. Advances in Colloid and Interface Science, p.102829. https://doi.org/10.1016/j.cis.2022.102829
Das, M., Patil, S., Bhargava, N., Kang, J.F., Riedel, L.M., Seal, S. and Hickman, J.J., 2007. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials28(10), pp.1918-1925. https://doi.org/10.1016/j.biomaterials.2006.11.036
Das, S., Dowding, J.M., Klump, K.E., McGinnis, J.F., Self, W. and Seal, S., 2013. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine8(9), pp.1483-1508. https://doi.org/10.2217/nnm.13.133
Dhall, A. and Self, W., 2018. Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants7(8), p.97. https:// doi.org /10.3390/antiox7080097
Dhall, A., Burns, A., Dowding, J., Das, S., Seal, S. and Self, W., 2017. Characterizing the phosphatase mimetic activity of cerium oxide nanoparticles and distinguishing its active site from that for catalase mimetic activity using anionic inhibitors. Environmental Science: Nano4(8), pp.1742-1749. https://doi.org/10.1039/C7EN00394C
Elahi, B., Mirzaee, M., Darroudi, M., Oskuee, R.K., Sadri, K. and Amiri, M.S., 2019. Preparation of cerium oxide nanoparticles in Salvia Macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities. Ceramics International45(4), pp.4790-4797. http://dx.doi.org/10.1016/j.ceramint.2018.11.173
Javadi, F., Yazdi, M.E.T., Baghani, M. and Es-haghi, A., 2019. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Materials Research Express6(6), p.065408. https://doi.org/ 10.1088/2053-1591/ab08ff
Kargar, H., Ghazavi, H. and Darroudi, M., 2015. Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceramics International41(3), pp.4123-4128. http://dx.doi.org/10.1016/j.ceramint.2014.11.108
Khatami, M., Sarani, M., Mosazadeh, F., Rajabalipour, M., Izadi, A., Abdollahpour-Alitappeh, M., Lima Nobre, M.A. and Borhani, F., 2019. Nickel-doped cerium oxide nanoparticles: green synthesis using stevia and protective effect against harmful ultraviolet rays. Molecules24(24), p.4424. https://doi.org/10.3390/molecules24244424
Kim, S.J. and Chung, B.H., 2016. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydrate polymers150, pp.400-407. https://doi.org/10.1016/j.carbpol.2016.05.021
Korde, P., Ghotekar, S., Pagar, T., Pansambal, S., Oza, R. and Mane, D., 2020. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications. J. Chem. Rev2(3), pp.157-168. https://doi.org/10.22034/jcr.2020.106601
Li, C., Sun, Y., Hess, F., Djerdj, I., Sann, J., Voepel, P., Cop, P., Guo, Y., Smarsly, B.M. and Over, H., 2018. Catalytic HCl oxidation reaction: Stabilizing effect of Zr-doping on CeO2 nano-rods. Applied Catalysis B: Environmental, 239, pp. 628-635. doi.org/10.1021/acs.langmuir.2c02366
 
Liu, N., Fu, X., Duan, D., Xu, J., Gao, X. and Zhao, L., 2018. Evaluation of bioactivity of phenolic compounds from the brown seaweed of Sargassum fusiforme and development of their stable emulsion. Journal of Applied Phycology30, pp.1955-1970. https://link.springer.com/article/10.1007/s10811-017-1383-0
Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., Anwaar, S., Abbas, F. and Jan, T., 2016. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. International journal of nanomedicine, pp.5015-5025. https://doi.org/10.2147/ijn.s113508
     Mensor, L., Menezes, F., Leita ̃, G., Reis, A., Santos, T., Coube, C and Leita, S., 2001. Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method. Phytother. Res, 15, pp. 127–130. https://doi.org/:10.1002/ptr.687
Miri, A., Darroudi, M. and Sarani, M., 2020. Biosynthesis of cerium oxide nanoparticles and its cytotoxicity survey against colon cancer cell line. Applied Organometallic Chemistry34(1), p. e5308. https://doi.org/10.1002/aoc.5308
Muthuvel, A., Jothibas, M., Mohana, V. and Manoharan, C., 2020. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorganic Chemistry Communications119, p.108086. https://doi.org/10.1016/j.inoche.2020.108086
Nyoka, M., Choonara, Y.E., Kumar, P., Kondiah, P.P. and Pillay, V., 2020. Synthesis of cerium oxide nanoparticles using various methods: implications for biomedical applications. Nanomaterials10(2), p.242. https://doi.org/10.3390/nano10020242
Rajeshkumar, S. and Naik, P., 2018. Synthesis and biomedical applications of cerium oxide nanoparticles–a review. Biotechnology Reports17, pp.1-5. https://doi.org/10.1016/j.btre.2017.11.008
Reddy Yadav, L.S., Manjunath, K., Archana, B., Madhu, C., Raja Naika, H., Nagabhushana, H., Kavitha, C. and Nagaraju, G., 2016. Fruit juice extract mediated synthesis of CeO 2 nanoparticles for antibacterial and photocatalytic activities. The European Physical Journal Plus131, pp.1-10. https://ui.adsabs.harvard.edu/link_gateway/2016EPJP.131.154R/doi:10.1140/epjp/i2016-16154-y
Rosi, H., Ethrajavalli, R. and Janci, M.I., 2020, July. Synthesis of Cerium Oxide Nanoparticles Using Marine Algae Sargassum Wightii Greville Extract: Implications for Antioxidant Applications. International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1-3). IEEE. http://dx.doi.org/10.1109/ICSCAN49426.2020.9262367
Sebastiani, F., Arteta, M.Y., Lindfors, L. and Cárdenas, M., 2022. Screening of the binding affinity of serum proteins to lipid nanoparticles in a cell free environment. Journal of Colloid and Interface Science610, pp.766-774. https://doi.org/10.1016/j.jcis.2021.11.117
Senthilkumar, R.P., Bhuvaneshwari, V., Ranjithkumar, R., Sathiyavimal, S., Malayaman, V. and Chandarshekar, B., 2017. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: as a bionanomaterials. International journal of biological macromolecules104, pp.1746-1752. https://doi.org/10.1016/j.ijbiomac.2017.03.139
Walkey, C., Das, S., Seal, S., Erlichman, J., Heckman, K., Ghibelli, L., Traversa, E., McGinnis, J.F. and Self, W.T., 2015. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano2(1), pp.33-53. https://doi.org/10.1039%2FC4EN00138A
Wu, H., Tito, N. and Giraldo, J.P., 2017. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS nano11(11), pp.11283-11297. https://doi.org/10.1021/acsnano.7b05723
Xue, Y., Luan, Q., Yang, D., Yao, X. and Zhou, K., 2011. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. The Journal of Physical Chemistry C115(11), pp.4433-4438. https://doi.org/10.1021/jp109819u
Yen, G. and Chen, H.Y., 1995. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity, Journal of Agricultural and Food Chemistry, 43, pp.27-32. http://dx.doi.org/10.1021/jf00049a007