نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

چکیده

در مطالعه حاضر خواص آنتی‌اکسیدانی پروتئین آبکافتی حاصل از ضایعات کفال ماهیان دریای خزر در زمان‌های مختلف آبکافت مورد بررسی قرار گرفت. بدین منظور 20 قطعه ماهی کفال با میانگین وزنی 50 ± 300 گرم تهیه شد و ضایعات شامل سر، باله‌ها و امعاء و احشاء جهت انجام آبکافت با آنزیم آلکالاز L 4/2 (غلظت آنزیم 1/5 درصد وزن ماده اولیه، دما 55 درجه سانتی‌گراد و pH 8) در زمان‌های مختلف آبکافت شامل 30، 60، 120 و 180 دقیقه مورد استفاده قرار گرفت. نتایج نشان داد درصد پروتئین و خاکستر در پودر پروتئین آبکافتی نسبت به نمونه‌ی‌ خام به طور معنی‌داری افزایش و درصد چربی کاهش یافت (0/05>p). پروتئین محلول و درجه آبکافت ضایعات با افزایش زمان آبکافت تا 120 دقیقه افزایش یافتند(0/05>p). قدرت مهار رادیکال آزاد DPPH با افزایش غلظت پروتئین تا 120 دقیقه، افزایش پیدا کرد(0/05>p) و کمترین مقدار IC50 در زمان 120 و 180 دقیقه (به‌ ترتیب 0/06±1/04، 0/01±0/01 میلی‌گرم بر میلی‌لیتر) به دست آمد(0/05>p).  با افزایش غلظت پروتئین و زمان آبکافت، قدرت کاهندگی آهن سه ظرفیتی افزایش معنی‌داری پیدا کرد (0/05>p).  قدرت مهارکنندگی رادیکال ABTS نیز، با افزایش زمان آبکافت تا 120 دقیقه افزایش یافت (0/05>p). به طور کلی، با توجه به اینکه پروتئین آبکافتی حاصل از ضایعات کفال ماهیان دریای خزر در حذف رادیکال‌های آزاد DPPH، ABTS و همچنین قدرت کاهندگی آهن سه ظرفیتی عملکرد مناسبی نشان دادند، می‌توان اظهار داشت که این محصول قابلیت استفاده به عنوان یک ترکیب آنتی‌اکسیدانی را دارد.

کلیدواژه‌ها

موضوعات

Agyei, D. and Danquah, M.K., 2012. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science & Technology, 23(2), pp.62-69. DOI: 10.1016/j.tifs.2011.08.010
Ahmadi, F., Kadivar, M. and Shahedi, M., 2007. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food chemistry, 105(1), pp.57-64. DOI: 10.1016/j.foodchem.2007.03.056
Ahn, C.B., Je, J.Y. and Cho, Y.S., 2012. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 49(1), pp.92-98. DOI: 10.1016/j.foodres.2012.08.002
AOAC. 2000. Official Methods of Analysis, Washington, DC. USA, Association of Analytical Chemists.
Aspmo, S.I., Horn, S.J. and Eijsink, V.G., 2005. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40(5), pp.1957-1966.DOI: 10.1016/j.procbio.2004.07.011
Bakhshan AV., Alizadeh Doughikollaee E. and Taheri A. 2014. Investigation of antioxidative properties of protein hydrolysate obtained from waste, in the Salmon (Salmo salar) filleting operation. Journal of Comparative Pathobiology. 11(44): 1143 – 1152. (in Persian)
Bamshad, M., Askari Hesni, M., Teimory, A. and Madjdzadeh, S.M., 2016. Morphology of the sagittal otolith in Liza aurata (Risso, 1810) from coastal habitats of Caspian Sea southern basin. Journal of Aquatic Physiology and Biotechnology, 4(1), pp.33-48. (In Persian). DOI:
Behruz, M., Norouzi, M., AmirJanati, A. and Samie, M.H., 2016. Genetic structure of golden mullet (Liza aurata) in Gomishan and Anzali wetlands using microsatellite molecular technique. (In Persian) DOI:
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. and Nasri, M., 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), pp.1198-1205. DOI: 10.1016/j.foodchem.2008.10.075
Chalamaiah, M., Hemalatha, R. and Jyothirmayi, T., 2012. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food chemistry, 135(4), pp.3020-3038. DOI: 10.1016/j.foodchem.2012.06.100
Dey, S.S. and Dora, K.C., 2014. Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus). Journal of food science and technology, 51, pp.449-457. DOI: 10.1007/s13197-011-0512-z
Esmaeili Kharyeki M., Rezaei M., Khodabandeh S. and Motamedzadegan A. 2020. Enzymatic Production of Protein Hydrolysate with DPP-IV Inhibitory and Antioxidant Activity from Skipjack Tuna (Katsuwonus pelamis) Head. Modares Journal of Biotechnology. 11(2): 177‐184. DOI:
Esmaeili Kharyeki, M., Rezaei, M., Khodabandeh, S. and Motamedzadegan, A., 2018. Antioxidant activity of protein hydrolysate in skipjack tuna head. Fisheries Science and Technology, 7(1), pp.57-64. (in Persian). DOI:
FAO. (2020). The State of World Fisheries and Aquaculture 2020: Sustainability in Action.DOI: 10.4060/ca9229en
Farvin, K.S., Andersen, L.L., Nielsen, H.H., Jacobsen, C., Jakobsen, G., Johansson, I. and Jessen, F., 2014. Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food chemistry, 149, pp.326-334. DOI: 10.1016/j.foodchem.2013.03.075
Foh, M.B.K., Amadou, I., Foh, B.M., Kamara, M.T. and Xia, W., 2010. Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. International journal of molecular sciences, 11(4), pp.1851-1869. DOI: 0.3390/ijms11041851
Gajanan, P.G., Elavarasan, K. and Shamasundar, B.A., 2016. Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases. Environmental Science and Pollution Research, 23, pp.24901-24911. DOI: 10.1007/s11356-016-7618-9
Galla, N.R., Pamidighantam, P.R., Akula, S. and Karakala, B., 2012. Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chemistry, 135(3), pp.1479-1484. DOI: 10.1016/j.foodchem.2012.05.098
García-Moreno, P.J., Batista, I., Pires, C., Bandarra, N.M., Espejo-Carpio, F.J., Guadix, A. and Guadix, E.M., 2014. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Research International, 65, pp.469-476. DOI: 10.1016/j.foodres.2014.03.061
Hathwar, S.C., Bijinu, B., Rai, A.K. and Narayan, B., 2011. Simultaneous recovery of lipids and proteins by enzymatic hydrolysis of fish industry waste using different commercial proteases. Applied Biochemistry and Biotechnology, 164, pp.115-124. DOI: 10.1007/s12010-010-9119-5
Hosseini, S., Ghoroghi, A., Jamalzadeh, H.R. and Safari, R., 2012. Comparison of produced fish protein hydrolysete from viscera and head of Silver carp (Hypophthalmichthys molitrix) using Alcalase enzyme and internal tissue enzymes. ISFJ, 21(3), pp.55-62. (In Persian). DOI: 10.22092/ISFJ.2017.110071
Hoyle, N.T., 1994. Quality of fish protein hydrolyzates from herring. J. Food Sci., 59, p.129. DOI:
Huang, X., Dai, J., Fournier, J., Ali, A.M., Zhang, Q. and Frenkel, K., 2002. Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells. Free Radical Biology and Medicine, 32(1), pp.84-92. DOI: 10.1016/S0891-5849(01)00770-5
Jafari Taraji, R., Alishahi, A., Ojagh, S.M. and Esmaeili Molla, A., 2015. Protein hydrolysates from viscera of cultured Siberian sturgeon (Acipenser baerii) and its use for bacterial (Salmonella typhi) culture medium. Fisheries Science and Technology, 4(3), pp.47-59. (In Persian). DOI:
Javadian, S.R., Roshan, A., Oveisipour, M.R., Keshavarz, M. and Nemati, M., 2015. Optimization of production of conventional Kilka hydrolyzed protein (Clupeonella cultiventris) using promody enzyme. Journal of Marine Biology, 26, pp. 90-82 (In Persian).
Jiang, H., Tong, T., Sun, J., Xu, Y., Zhao, Z. and Liao, D., 2014. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chemistry, 154, pp.158-163. DOI: 10.1016/j.foodchem.2013.12.074
Khantaphant, S. and Benjakul, S., 2008. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(4), pp.410-419. DOI: 10.1016/j.cbpb.2008.08.011
Khantaphant, S., Benjakul, S. and Kishimura, H., 2011. Antioxidative and ACE inhibitory activities of protein hydrolysates from the muscle of brownstripe red snapper prepared using pyloric caeca and commercial proteases. Process Biochemistry, 46(1), pp.318-327. DOI: 10.1016/j.procbio.2010.09.005
Khiari, Z., 2010. Functional and bioactive components from mackerel (Scomber scombrus) and blue whiting (Micromesistius poutassou) processing waste. DOI: 10.21427/D7FK50
Khushairay ESI., Ayub MK and Babji AS. 2014. Effect of enzymatic hydrolysis of pancreatin and alcalase enzyme on some properties of edible bird’s nest hydrolysate. AIP Conference Proceedings. 1614(1): 427-432
Kim, J. and Kim, S.K., 2013. Bioactive peptides from marine sources as potential anti-inflammatory therapeutics. Current Protein and Peptide Science, 14(3), pp.177-182. DOI:
Kristinsson, H.G. and Rasco, B.A., 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), pp.43-81. DOI: 10.1080/10408690091189266
Kumar, N.S., Nazeer, R.A. and Jaiganesh, R., 2011. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides, 32(7), pp.1496-1501. DOI: 10.1016/j.peptides.2011.05.020.
Lassoued, I., Mora, L., Nasri, R., Aydi, M., Toldrá, F., Aristoy, M.C., Barkia, A. and Nasri, M., 2015. Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. Journal of proteomics, 128, pp.458-468. DOI: 10.1016/j.jprot.2015.05.007
Leong, L.P. and Shui, G., 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food chemistry, 76(1), pp.69-75. DOI: 10.1016/S0308-8146(01)00251-5
Li, Y., Zhang, S., Zhijie, B., Sun, N. and Lin, S., 2022. Exploring the activation mechanism of alcalase activity with pulsed electric field treatment: Effects on enzyme activity, spatial conformation, molecular dynamics simulation and molecular docking parameters. Innovative Food Science and Emerging Tchnology, 76, 102918. DOI: 10.1016/j.ifset.2022.102918
Lowry, O., Rosebrough, N., Farr, A.L. and Randall, R., 1951. Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193(1), pp.265-275. DOI: 10.1016/S0021-9258(19)52451-6
Meshginfar N., Sadeghi Mahoonak AR., Ziaiifar AM., Ghorbani M. and Kashaninejad M. 2014. Optimization of the production of protein hydrolysates from meat industry by products by response surface methodology. Journal of Food Research (University of Tabriz). 24(2): 215-225. DOI:
Mishra K., Ojha H. and Chaudhury NK. 2012. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry. 130: 1036-1043. DOI: 10.1016/j.foodchem.2011.07.127
Movahednia, E., Moradi, M., Motamedzadegan, A. and Bahri, A., 2016. optimization of enzymatic hydrolysis of Yellowfin tuna (Thunnus albacares) by using method RSM. Journal of Marine Science and Technology. DOI: 10.22113/jmst.2016.38961
Nahvi, Z., Hosseini, S.F. and Zandi, M., 2017. Production of hydrolyzed protein from Kilka by enzymatic hydrolysis and evaluation of its bioactive properties. Journal of Aquatic Physiology and Biotechnology, 5(3), pp.39-58. (In Persian). DOI: 10.22124/japb.2017.2565
Neklyudov, A.D., Ivankin, A.N. and Berdutina, A.V., 2000. Properties and uses of protein hydrolysates. Applied Biochemistry and Microbiology, 36, pp.452-459. DOI: 10.1007/BF02731888
Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. and Shahiri, H., 2009a. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food chemistry, 115(1), pp.238-242. DOI: 10.1016/j.foodchem.2008.12.013
Ovissipour, M., Benjakul, S., Safari, R. and Motamedzadegan, A., 2010. Fish protein hydrolysates production from yellowfin tuna Thunnus albacares head using Alcalase and Protamex. International Aquatic Research, 2(2), p.87. DOI:
Ovissipour, M., Rasco, B., Shiroodi, S.G., Modanlow, M., Gholami, S. and Nemati, M., 2013. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. Journal of the Science of Food and Agriculture, 93(7), pp.1718-1726. DOI: 10.1002/jsfa.5957
Ovissipour, M., Safari, R., Motamedzadegan, A. and Shabanpour, B., 2012. Chemical and biochemical hydrolysis of Persian sturgeon (Acipenser persicus) visceral protein. Food and Bioprocess Technology, 5, pp.460-465. DOI: 10.1007/s11947-009-0284-x
Ovissipour, M., Taghiof, M., Motamedzadegan, A., Rasco, B. and Molla, A.E., 2009b. Optimization of enzymatic hydrolysis of visceral waste proteins of beluga sturgeon Huso huso using Alcalase. International Aquatic Research, 1(1), p.31. DOI:
Ovissipour, M.R., Kenari, A.A., Motamedzadegan, A. and Nazari, R.M., 2010. The study on the properties of the Yellowfin tuna (Thunnus albacares) visceral protein hydrolysates using commercial enzymes. Iranian Food Science & Technology Research Journal, 6(1), pp.68-76. (In Persian) DOI:
Oyaizu, M., 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), pp.307-315. DOI: 10.5264/eiyogakuzashi.44.307
Pasupuleti, V.K., Holmes, C. and Demain, A.L., 2010. Applications of protein hydrolysates in biotechnology (pp. 1-9). Springer Netherlands. DOI: 10.1007/978-1-4020-6674-0_1
Pires, C., Clemente, T. and Batista, I., 2013. Functional and antioxidative properties of protein hydrolysates from Cape hake by‐products prepared by three different methodologies. Journal of the Science of Food and Agriculture, 93(4), pp.771-780. DOI: 10.1002/jsfa.5796
Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y. and Xue, S.J., 2008. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food chemistry, 108(2), pp.727-736. DOI: 10.1016/j.foodchem.2007.11.010
Reyhani Poul, S., Jafapour, S.A. and Safari, R., 2018. Evaluation of oil fatty acid profile, functional properties and antioxidants activity of hydrolyzate produced from rainbow trout (Oncorhynchus mykiss) viscera by application of protamex and neutrase enzymes. Iranian Food Science and Technology Research Journal, 14(1), pp.162-176. DOI: 10.22067/ifstrj.v1395i0.53714
Roshan, S.A., Ovissipour, M., Keshavarz, M. and Nemati, M., 2015. Optimization of the production of protein hydrolysates from common Kilka (Clupeonella cultiventris) using protease enzyme (Promod). Journal of Marine Biology, 7(2), pp.83-90. (In Persian). DOI:
Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J.M., Gildberg, A. and Rasco, B., 2012. Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 5, pp.73-79. DOI: 10.1007/s11947-009-0225-8
Saiga, A.I., Tanabe, S. and Nishimura, T., 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of agricultural and food chemistry, 51(12), pp.3661-3667. DOI: 10.1021/jf021156g
Sarmadi, B.H. and Ismail, A., 2010. Antioxidative peptides from food proteins: A review. Peptides, 31(10), pp.1949-1956. DOI: 10.1016/j.peptides.2010.06.020
Shahi, Z., Sayyed-Alangi, S.Z. and Najafian, L., 2020. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon, 6(2). DOI:10.1016/j.heliyon.2020.e03365
Shahidi, F. and Zhong, Y., 2015. Measurement of antioxidant activity. Journal of functional foods, 18, pp.757-781. DOI: 10.1016/j.jff.2015.01.047
Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T., 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6), pp.945-948. DOI: 10.1021/jf00018a005

Statistical Year Book of the Fisheries organization of Iran. 2018-2022. Deputy Director of Planning and Planning Management. pp, 33. (in Persian)

Thiansilakul, Y., Benjakul, S. and Shahidi, F., 2007. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food chemistry, 103(4), pp.1385-1394. DOI: 10.1016/j.foodchem.2006.10.055
Yang, J.I., Liang, W.S., Chow, C.J. and Siebert, K.J., 2009. Process for the production of tilapia retorted skin gelatin hydrolysates with optimized antioxidative properties. Process Biochemistry, 44(10), pp.1152-1157. DOI; 10.1016/j.procbio.2009.06.013
Yang, P., Ke, H., Hong, P., Zeng, S. and Cao, W., 2011. Antioxidant activity of bigeye tuna (Thunnus obesus) head protein hydrolysate prepared with Alcalase. International Journal of Food Science & Technology, 46(12), pp.2460-2466. DOI: 10.1111/j.1365-2621.2011.02768.x
You, L., Zhao, M., Cui, C., Zhao, H. and Yang, B., 2009. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative food science & emerging technologies, 10(2), pp.235-240. DOI: 10.1016/j.ifset.2008.08.007.